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An approximate renormalization procedure is derived for the Hamiltonian 
H(v, x, t ) =  v 2 / 2 -  M cos x - P cos k(x - t). It gives an estimate of the large 
scale stochastic instability threshold which agrees within 5-10% with the results 
obtained from direct numerical integration of the canonical equations. It shows 
that this instability is related to the destruction of KAM tori between the two 
resonances and makes the connection with KAM theo12r Possible improvements 
of the method are proposed. The results obtained for H allow us to estimate the 
threshold for a large class of Hamiltonian systems with two degrees of freedom. 

KEY WORDS: Hamiltonian systems; renormalization group; stochasticity; 
resonance overlap; KAM theory. 

1. INTRODUCTION 

The transition to the large-scale instability of two-degrees-of-freedom Ham- 
iltonian systems has been a long-standing problem in many fields of 
physics: astronomy, statistical mechanics, accelerator physics, and plasma 
physics. The lack of relevant criteria for this transition has been the cause 
of a large amount of numerical calculations adapted to each specific 
problem to be solved. The interested reader is referred to four basic 
proceedings of conferences (1-4) and to the review by Chirikov, (5) which 
give the principal results and references on the subject. 
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Approximate criteria have been derived for this transition (see for 
instance the review by Lichtenberg in Ref. 4 and the paper by Mo(6)). The 
most popular among them is the so-called "resonance overlap criterion." 
Let us first recall the simplest nonintegrable, nonlinear Hamiltonian with 
two resonant terms, 

H ( v , x , t )  = v 2 / 2 -  M c o s x -  P c o s k ( x  - t) (I)  

which will appear as a paradigm for the two-degrees-of-freedom Hamilto- 
nian systems. In fact H is a time-dependent one-degree-of-freedom Hamil- 
tonian, but it describes the same dynamical system (v,x)  as the two- 
degrees-of-freedom Hamiltonian 

~ (v ,  w, x, y)  = H(v ,  x, y)  + w (2) 

as can be seen from the canonical equations. Both H and % describe the 
one-dimensional motion of a particle with velocity v in the potential of two 
longitudinal waves with, respectively, M and P amplitudes, 0 and 1 phase 
velocities, and k wave number ratio (see Appendix A). We assume in the 
first two sections that k is a rational number r / p .  Therefore % has 
periodicity 2pTr in x andy ,  and the motion takes place on the torus {(x, y)  
both in [-p~r, /w]}.  The correspondence between H and % allows us to 
speak about a motion on a torus even when we deal with H which is 
explicitly time dependent; t belongs to R. In this section we deal with the 
phase space ( ( x, v) / x E [ - p~r, per], v E R }. 

When P is zero we recover the Hamiltonian of the swing (see for 
instance the study of this Hamiltonian in Ref. 5 and in the paper by Berry 
in Ref. 2). In this case a resonant domain (where the motion is a libration 
about the fixed point x = v = 0) of half-width X = 2 f M ,  centered on 
v = 0, appears in the ( v , x )  phase space as shown in Fig. la. Inside this 
domain the orbits are said to be trapped by the resonance M. Outside the 
motion is a rotation and the trajectories in (v, x) are topologically equiva- 
lent to the straight lines corresponding to M = P = 0. 

A similar resonance domain of half-width Y = 2f f f  exists about v = 1 
when M = 0 and P is nonzero. As this domain moves with a velocity 1, we 
use a Poincar6 map of the system, which is equivalent here to a strobo- 
scopic plot of the system with a period T =  2~r/k. With this map, the 
resonance domain seems fixed (Fig. lb). In the following, all the pictures of 
the phase space are drawn in this manner. 

When either M or P is zero, the Hamiltonian (1) is integrable. This is 
no longer the case when both are nonzero. Physically, when both M and P 
are small, we can expect that the trajectories between the two resonances 
are slightly pinched, but conserve their topological nature (Fig. lc). The 
phase space picture contains the two unperturbed domains with half-widths 
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Fig. 1. Sketch of the phase space (k = 1). (a) Resonance M alone; (b) resonance P alone; (c) 
both resonances present. 

X and Y and a bunch of slightly perturbed orbits in between. Defining 
s = X + Y, this picture seems likely as long as s << 1, the unperturbed 
velocity spacing between the two resonances. When s increases, numerical 
calculations (I-5) show that the separatrices (the curves which separate the 
domains of libration and of rotation) burst out into stochastic layers (5) 
which become larger and larger, and eventually merge between the two 
resonances. The value s o of s where such a merging occurs is called the ~ 
threshold of the large-scale stochastic instability. For s >/s 0, trajectories 
can diffuse in phase space from the vicinity of the resonance M to that of 
the resonance P. Chirikov has proposed s-----1 as a criterion for this 
instability. (5) Numerical  calculations have shown that this yields the right 
order of magnitude of s o in many  cases [more complicated than the case 
described by the Hamil tonian (1)]. s = 1 corresponds to the contact of the 
unperturbed separatrices of the resonances M and P, so that the criterion 
s 0--- 1 has been called the "resonance overlap criterion." 

In fact the resonances do not overlap. This has been shown theoreti- 
cally (7) and numerically. (s) The physical explanation is the following: let 
us start with the case M = P = 0, and let us consider the orbit associated to 
v = 1 (phase velocity of the resonance P).  Then let us increase progressively 
the value of M from 0. The trace of the v = 1 orbit on the Poincar6 map 
will be bent, as it is repelled by the splitting of the v = 0 axis into the 
separatrix of resonance M (Fig. 2a). For a fixed value of M, let us now give 
a little nonzero value to P. Then the distorted v = 1 orbit, will break in its 
turn into two separatrices having the same shape (Fig. 2b). Indeed the 
resonance P is repelled by the resonance M. When P increases, it also 
repells the resonance M, and this gives Fig. 2c. As a consequence, the 
separatrices which can be computed by a perturbation method (7,s) do not 
touch for s = 1. However, numerical calculations have generally shown that 
s o is smaller than 1. Furthermore, when M .  P =/= 0, the separatrices do not 
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Fig. 2. 
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Repulsion of neighboring resonances. (a) P = 0, (b) P small, (c) P and M of the same 
order of magnitude. 

exist any longer and are replaced by thicker and thicker stochastic layers as 
s increases. The "resonance overlap" is in fact a stochastic layer overlap. 

The right understanding of the appearance of stochasticity can only be 
obtained in the light of the Kolmogorov-Arno ld -Moser  (KAM) theory. (9) 
For applying this theory it is more convenient to use the Hamiltonian (2), 
as it is time independent. Let us write % = %o(V,W)- V(x, y), where 
%o = v2/2 + w and V =  M c o s x  + Pcosk(x - y ) .  The Hamiltonian %0 is 
nonlinear and integrable and V is a perturbation. When V is small enough, 
the K A M  theorem states that most of the tori of the V =  0 case are 
preserved. This confirms the physical intuition of Fig. 1. The bent lines in 
between the resonances M and P on Fig. lc are the traces of preserved tori 
on the Poincar6 map. The transition to the large-scale stochastic instability 
corresponds to the destruction of the "last toms"  between the resonances M 
and P (there is probably no last torus since it seems likely that, as long as 
one torus is preserved, a continuum of tori is preserved in its vicinity). 

Greene (10) has studied the standard mapping which corresponds to the 
Hamiltonian formally defined (5) as 

q , - o 0  

K ( v , x , t )  = v 2 / 2  - M cos(x - nt) (3) 
n ~ - - o o  

which is nothing but the periodization in v of the Hamiltonian H for 
M = P and k = 1. The tori are characterized by their rotation number  Q, 
which is the number  of periods T of the stroboscopic flash necessary for x 
to increase by 2~r on the torus. Greene made the assumption that the torus 
associated to Q is equal to the golden mean was the "last" to disappear. He 
characterized the destruction of this torus by the destabilization of neigh- 
boring periodic orbits. This method gives an estimate of s o in good 
agreement with direct numerical estimates. The trade-off of the method is 
the necessity to determine the "last" torus (which is not always associated 
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with the golden mean (~1)), and long numerical calculations of the tangent 
mapping for a whole set of periodic orbits. Furthermore, the method, 
though efficient, relies upon many unproven assumptions and does not give 
an explanation of the mechanism of the torus destruction. 

In this paper we propose a renormalization method for computing s o 
which also shows how tori are destroyed. Our theory involves some approx- 
imations but makes an explicit connection with KAM theory to prove the 
stability of a given torus. The basic idea of the theory is that of infinitely 
nested dynamical systems. This idea has been present for a long time in the 
literature and was made popular by a famous picture of Arnold (Fig. 20.10 
of Ref. 9). Ford, quoted by Chirikov in Ref. 5, speaks about Russian dolls. 
What is new in our theory is that we give the explicit method for going 
from one system to the next nested one. Figure 3 shows schematically the 
principle of the renormalization method: the small subsystem in the box 
between the resonances M and P, becomes through the renormalization 
transformation a system containing new resonances similar to M and P. As 
Wilson (12) did, we define a renormalization transformation for the Hamil- 
tonian describing the system. 

In Section two we derive the renormalization transformation for 
Hamiltonians of the type (1). In Section 3 we study this transformation. 
Section 4 describes the method for computing the threshold, and Section 5 
gives possible improvements of the method. Section 6 shows how the 
previous results can be applied to any two-degrees-of-freedom Hamiltonian 
system. 

/.r 

% i ........... 
J 

0 ; 0 

Fig. 3. Graphical description of the renormalization method. 
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2. DERIVATION OF THE RENORMALIZATION TRANSFORMATION 

The dynamical system described by (1) depends on three parameters 
(M, P, k). Let ~-0 be the KAM torus characterized by the rotation number 
Q0. We will exhibit an infinite set of nested subdynamical systems which 
contain this torus. When M = P = 0 the velocity on the torus ~-0 remains 
equal to its initial value v 0 along the motion. Q0 is then given by 

Qo = Q,(vo) = 2rrl(voT) = klvo (4) 

When ~-0 is between the resonances M and P, then v 0 < 1 and Q0 > k. 
When M ~ 0 and P = 0, H is integrable. We define the action variable for 
untrapped orbits by 

where 

It is easy to find 

with 

(x,  no)  = 

1 ('2~r )o v(x, no)aX (5) 

[ 2 (H  o + Mcosx)] '/z (6) 

I = 4,/-ME(m)/~r,[-rn (7) 

m = 2//(1 + HolM ) (8) 

where E is the complete elliptic integral of the second kind. (13) Equations 
(7) and (8) can be inverted to get H 0 as a function of I, H 0 = Ho(I ). The 
canonical transformation generated by 

FA(X,I ) = fXv[ z, Ho(I) ] dz (9) 

defines the angle variable 0. We now restrict the phase space defined in 
Section 1 by the conditions v > 0 and m < 1. This last condition implies 
that the trajectory is not trapped in the resonance M when P = 0, and 
removes the singularities of the action angle transformation. We get 

x(I,O) = 2am[ K(m)O/~r,m] (10) 

where m is defined by (8), K is the complete elliptic integral of the first 
kind, and am is the amplitude. (13) With the above definitions, I tends to v 
and 0 to x, in the limit where M goes to zero. So we expect that for M not 
too large, the Poincar6 map in (v,x)  and (I,0) will be very similar. It is 
worth noting that the canonical transformation given by F A appears as a 
global extension of the Kolmogorov transformation (5) defined by FK(x, I) 
= xI  + (M s inx) / I  which "kills" the resonance M, since F K = F~ + O072), 
where 7/-- M / v  z, without the trouble of a small denominator (see Appen- 
dix B). 



RenormalizaUon Method 263 

The equivalent of the velocity is now the transit frequency 

~ ( I )  = d H o / d I =  ~r~/-M/[~/-mK(m) ] (11) 

For a given M, the action I remains equal on if0 to its initial value I 0 
defined by 

Q0 = Q2(I0) = 2~r / (aoT)  = k / •o  (12) 

where ~2 0 = ~(I0). As if0 is characterized by the rotation number  Q0, I0 
changes with M according to (12). For M = 0, we recover I 0 = v 0. 

When M and P are both nonzero H becomes, in the previous action 
angle variables, 

n ' ( I , O , t )  = 11o(1 ) - P c o s k [ x ( I , O )  - t] (13) 

As we assumed that k is a rational number  r / p ,  then H '  is 2prr periodic in 
0 and can be Fourier analyzed: 

+oo 
U ' ( I , O , t )  = Ho(I  ) - ? ~ V , ( I ) c o s [ ( k  + n ) O -  ke] (14) 

n ~ --oo 
This is the first step of the renormalization procedure. The coefficients V n 
can be determined analytically only when 2k is an integer. (14) As shown in 
Appendix C, for any k, the V,'s can be expanded in the nome q(m)  
= exp [ - r rK(1  - m ) / K ( m ) ] .  This yields 

V n = [2rr(q/m)l /2 /K(m)]2k[  qn ,=lk Cl2k Cl-n-ll + O(qn+2)] (15) 

Where C~ t = z ( z  - 1) �9 �9 �9 (z - l + 1 ) / l !  for z ieal and l integer. This is 
quite a good approximation as long as m is not very close to 1 since q is a 
very slowly growing function (13) of m. We call resonance R n, the resonance 

associated with V, and lying above /~  = 4~/M/~r, the action value at the 
separatrix of resonance M. As P goes to zero, the phase (k  + n)O - kt  of 
the resonance R, is stationary for a value of the action / ,  such that 
Fa(I~) = v, = k / ( k  + n). According to (12),/~ corresponds to a cycle with a 
rotation number  Q = k + n. 

H '  exhibits an infinity of such resonances. The K A M  theorem states 
that a torus if0 associated with a sufficiently irrational value of Qo is 
conserved for small enough P. Let n o be the integer part  of z = Q0 - k. It  
follows that %0 > v0 > v~o+l and fro lies between the resonances R,0 and 
Rn0+ l- In Fig. 4 we have plotted the result of numerical calculations in the 
case O = X ~  Y = 1, k = 2, and s = 0.4. The Poincar6 map is given both in 
( v , x )  space and in ( I , 0 )  space. As expected, as M is not too large, the two 
plots are very similar above the resonance M. The resonance P corresponds 
to a chain of two islands, and the resonance R, to a chain of 2 + n islands. 
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The trapping domain of resonances R n, n = 1,2,3,4, can be seen on the 
plots. For instance, the n o value associated to the torus ~-0 corresponding to 
the untrapped orbit situated between R 1 and R 2, is equal to 1. The 
continuous lines on the (v, x) plot correspond to a perturbation theory (7'8) 
prediction of the separatrices of the resonances M, P, and R 1. As the 
Hamiltonian (1) defined by (M, P,k) and the one defined by (P, M, I l k )  
correspond to the same dynamical system (cf. Appendix A), when n o = 0, 
we replace H by its equivalent 

He(w, y,t '  ) = w 2 / 2 -  e c o s y  - Mcosk ' (y  - t') (16) 

with k' = 1/k. The velocities v and w are related through v + w = 1. The 
rotation number of ~o in the space (w,y) is given by (4), Q~ = k ' /w  o 
= Qo/[k( Qo - k)]. It is straightforward to show that Q~ > k' + 1. New v,'s 
can be computed and it appears that the new n o verifies n o/> 1. Using 
either H or H e, we can consider that n o/> 1 for any ~-o between the 
resonances M and P. 

The second step in the renormalization procedure consists in neglect- 
ing all the resonant terms in Eq. (14) except those with n = n o and 
n = n o + 1, which are the most important for determining the stability of 
~-o: the averaged terms are fast perturbations of the motion with respect to 
the terms associated to the resonances Rn0 and Rno+V We then recover a 
Hamiltonian H "  with two resonances 

n o +  1 

H'(I,O,t)  = Ho(I ) - P ~ V,(I)eos[(k + n)O-  kt] (17) 
H ~ l'l 0 

H "  describes the strip of the phase space situated between Rno and R~o + I. 
The broadest of the strips situated between the resonances M and P 
corresponds to n 0 = 0. By replacing H by H e, this large strip splits into 
smaller ones. As a consequence the choice n 0 >/ 1 is done for decreasing 
more rapidly the width of the subsystem enclosing (0. 

As long as P is small, the action I(t) for a trajectory lying on g-0 
remains close to the value I o. For that reason we choose to approximate 
Ho(I ) by its second-order expansion in the vicinity of I 0 (this preserves the 
nonlinearity of the Hamiltonian) and to approximate the Vn(I)'s by U~ 
= V~(Io). This yields the Hamiltonian 

H(3)(I,O, t) = Ho(Io) + f~o(I- Io) + �89 I0) 2 

n o +  1 

- P  E U. c o s [ ( k +  n)O- kt] (18) 
n ~ t / 0  

where a 0 = O(Io), and a = d2Ho/dI 2. The third step of the renormalization 
procedure consists in assuming that H O) correctly describes the stability of 
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~-0 even for not too small values of P. This assumption seems likely when ~-o 
is preserved. 

We now define 

y = I k  + n o + ~ ] 0 -  k t  (19) 

where 

8 k = z - n  o = Q o - k - n  o (20) 

and ~ = 0 (respectively, 1) for 8k < �89 (respectively, 6k > �89 We define the 
canonical transformation from (I ,  O) to (J, y)  by the generating function 2 

F ( I ,  y ,  t) = I ( y  + k t ) / [ k  + n o + ~(Sk)] +/zy + pt (21) 

with 

# = (f~okr - OoIok r - k ) / a o k  ~ (22) 

k r = k + n o + ~ (23) 

1,.f /,-2. 2 1 2 ~2oI o +/zk p = ~,,o,~Ax + # a o l o k  r + 30010 - 

+ Ho(Io)  - f~okA~ (24) 

The new Hamiltonian resulting from this fourth step is 

H ( 4 ) ( j ,  y , t )  = ~J"~'o'~r ot'2r2- PUno+xcos  y _  P U . o + 1 _ x c o s k , ( y  _ 3'0 (25) 

where 

and 

k ' =  ( k  + n o + 1 - ~ ) / k  r (26) 

,{ = ( 2 ~  - 1 ) k / ( k  + n o + 1 - ~ )  ( 2 7 )  

In the new coordinates ~-0 is related to J0 = (~okr - k) / (aok2r)  . 
We then define a new time by t' = 7t, and a quantity w = a o k ~ J / y .  It  

is straightforward to show that the evolution of y ( t ' )  is described by the 
Hamiltonian 

H(5) (w ,  y , t  ') = w 2 / 2  - M'cos  y - P '  c o s k ' ( y  - t ' )  (28) 

where 

M ' =  PUno+XOofl 2 (29) 

p ,  = PUno + l_xo ~ (30) 

fl = ( k  + no) (k  + n o + 1 ) / k  (31) 

2 The canonical t ransformations for t ime-dependent Hamil tonians  are defined, for instance, in 
Chap. VII  of Ref. 17. 
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This is the fifth and  last step of the procedure.  In  the new coordinates  ~-0 is 
related to a velocity w 0 = (f~0kr - k ) / y  and  therefore, according to Eq. (4), 
to a rota t ion n u m b e r  Q '  = k ' / w  o = (2X - 1)k/[kr(f~ok r - k)]. The  defini- 
tion of X and  Eq. (12) yield 3 

Q ' =  Q o / ( k r l k r -  Q0l) (32) 

Between the resonances  M '  and  P '  there is a resonance  R~. The  above  
definit ion of X was chosen such that  ~-0 is be tween R~ and  M ' .  Therefore  
Q '  > k '  + 1, and  the condi t ion n o > 1 is satisfied for any  ~-0 with H (s) . The  
equat ions (12), (26), and  (28)-(32) define a renormal iza t ion  t ransforma-  
tion (12) T~ of a par t  of the dynamica l  system defined by  (1) which contains  
~-0- In  the limit where M goes to zero, it is easy to show that  M '  = F(n  o + 
X, P, M) ,  P '  = F(n  o + 1 - X, P, M ) ,  where 

F(l ,  P, M )  = t32( Q o / 2 k ) 2 ' ~ e M  t 

and ~ is given by  fo rmula  (C15) of Append ix  C. Previously def ined for 
rat ional  k's,  T~ can be extended by  cont inui ty to real k's.  

3. STUDY OF THE RENORMALIZATION TRANSFORMATION 

T r t ransforms (Q0,  k, M,  P )  into ( Q ' ,  k ' ,  M ' ,  P') .  As we shall see now, 
this t rans format ion  splits into simpler t ransformat ions .  This makes  the 
s tudy easier. 

By calculat ing z '  = Q '  - k '  = [1 - X - 8k] / [Sk  - X], n'  is the integer 
par t  of z '  (as Q '  > k '  + 1, then n' > 1) and  8k'  = z'  - n', we can  easily 
show that  8k'  is a funct ion of 8k only. I terat ing T r defines the series 
Ski, ni, Yti = X(6k i -0 ,  i = 1,2, . . . ,  which depend  only on the initial value 
8k o of 8k. The  (n;, X;) consti tute a coding of 8k o, equivalent  to the one given 
by  the coefficients ai, i = 1,2 . . . . .  of the deve lopment  of 8k o into a 
cont inuous  fract ion 

8k o = 1 / [ a  l 

Table  I gives two algori thms to 
reverse. 

+ 1 / ( a  2 +  1 / . . . ) ]  (33) 

calculate the aj's f rom the (ni, Xi)'s and  

The  8k --> 8k' m a p p i n g  has everywhere  a slope greater  than  4 (Fig. 5). 
This mapp ing  has a denumerab le  set of fixed points  8k2 character ized b y  
the corresponding value of (n, X). One  finds that  8k ~ = [(n 2 + 2n + 5) 1/2 - 
n - 1] /2  with aj's given by  aj = n + 1; 8k2 = [(n 2 + 4n) 1/2 - n] /2  with ass 

given by  a2l = n, a2l + 1 = 1. 

3 AS a consequence of the renormalization, the rotation numbers of the resonances R~+ x and 
R,+j-x, which were, respectively, k + n + X and k + n + 1 7 X ,  have become ~ and k'. It is 
therefore natural that the rotation number of ~0 change too. 



268 

Table I. 

( ni,  ~i ) -.9. a j  

Escande and Doveil 

Correspondence Between a i and n;, ~-i 

aj ~ ( ni,  Xi) 

(1) 

(2) 

(3) 

S e t j  = 0, i = 1 (1) S e t j  = 1, i =  1 

Is X i equal  to 07 (2) Is aj equal  to 1? 

Yes N o  (3) Yes N o  

A d d  1 t o j  A d d  1 t o j  X i = 1 X~ = 0 

aj  = n i + 1 aj  = 1 n i = a j+  1 n i = a j  - -  l 

A d d  1 t o j  A d d  2 t o j  A d d  1 t o j  

aj  = n i 

(4) A d d  1 t o i  
(5) G o  to step 2 

Equation (26) shows that k' depends on 3k, n, and k. When Q0 = Q(n, 
X, k) = k + n + 3kay, then n keeps the same value when T r is iterated, and 
there exists a k ~  k' mapping (Fig. 6) which has a stable fixed point 
kX~ = akX n + 1 - X .  

By Eqs. (29) and (30), M '  and P '  depend on n, ilk, k, M, and P. The 
condition Q0 = Q(n,X,k)  defines a ( k , M , P ) ~ ( k ' , M ' , P ' )  mapping. For 
an easier comparison with previous work, we prefer to consider X and Y, 
the unperturbed widths of the resonances M and P, and to deal with the 
equivalent mapping 9 K : ( k , X ,  Y ) ~ ( k ' , X ' ,  Y'). As shown in Fig. 7, 9% has 
one nontrivial hyperbolic fixed point II s = (kn x, X~, y x), the stable manifold 
Sx, of which is of dimension 2 (it contains the thick lines of Fig. 7), and four 
trivial fixed points: U o = (k~,0,0), II 1 = (k~, oo, oo), II  2 = (k~,0, oo), and 
II 3 = (k~, oo, 0). The points 1-I 2 and II 3 belong to the curve C~ of Sx~ and 
are sources. The X = 0 and Y = 0 planes are asymptotes of Sx~. $~ sepa- 
rates the regions of attraction of II o and H 1, which are sinks. In a more 
pictorial way, we may say that a saddle point (IIs) separates two holes 
(II0,1-I1) and two peaks (II 2 and II3). If the initial point to be renormalized 
is not just on the crest line (the stable manifold $x of IIs) it falls either on 
II o or on 1-i 1 as we iterate Tr. 

Let us define the line |  0,p) by k = k 0 and X / Y =  p. A point 
w = (k ,X,  Y)  belongs to |  which intersects $~ at ( k ,X ,  x, Y)) .  
When the stochasticity parameter s = X + Y verifies s < s~ x = X~ x + i x ,  we 
say that w is under $~ and above $~ in the opposite case. The series T/(w) 
of the iterates of w by T~ converges towards YI o in the first case, and 
towards IIl in the second case. When s = s x, T/(w) converges towards II s. 
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Fig. 5. Plot of z'(Sk) (upper figure) and 8k'(Sk) (lower figure) DKP corresponds to 8k' and 
DK to 8k. 
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Fig. 6. Plot ofk'(k) forn o= 1 a n d ) t = 0 ( a ) a n d h = l  (b). 

0 

Fig. 7. Hyperbolic fixed point of ~ for (n, X) fixed. 
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When w is under $~, for l large enough, T}(w) is in a vicinity of II 0 where 
the KAM theorem applies. As a consequence, there exists about ~-~ (~-0 
torus with rotation number Q x) a continuum of preserved tori and ~-x 
cannot be destroyed, otherwise it would be replaced by a stochastic layer 
with a finite width which could not be included into a thiner and thiner (as 
l grows) continuum of tori. So, for w under $x, the original dynamical 
system contains an infinite series of nested subsystems enclosing a contin- 
uum of preserved tori about ~-x. This continuum is also in the original 
system, so no trajectory can wander from the stochastic layer of M into the 
stochastic layer of P. There is no "resonance overlap." 

When w is above $~, then T/(w) converges towards II v Unfortunately, 
at the present time, no mathematical proof of the stochasticity of the 
system exists. Furthermore, the assumption made in the third step of the 
procedure that I remains close to I 0 on ~-0 becomes questionable. Neverthe- 
less, the results shown at the end of this paper give a strong indication that, 
in this case, ~-~ and all the tori in a small vicinity about it are destroyed and 
have turned into a stochastic layer. 

It follows from the above discussion that the present renormalization 
transformation T r has a denumerable set of nontrivial (hyperbolic) fixed 
points [the points of coordinate (QX,kx~,X~, y x) with Q X = Q(n,X,k~)]. 
The situation is therefore much more intricate than in Wilson's case. (12) 
Fortunately, we shall show that the knowledge of the x, $ ,  s is sufficient to 
give good estimates to the stochasticity threshold. 

4. THRESHOLD OF THE LARGE-SCALE INSTABILITY 

It is easy to compute $~ numerically, as it is attractive for any point w 
iterated through T r- 1 with Q0-- Q). We define the upper envelope of the 
$~'s as follows: it is, about X / Y  = O and k = k 0, the piece of the surface 
$~ which maximizes the stochasticity parameter s~. 

So far, we only considered tori related to rotation numbers Q0 > k + 
1. When k < Q < k + 1, we define the surface $ '  associated with H e by the 
rule that (k,X, Y) belongs to $ '  is equivalent to (l/k, Y,X) belongs to g. 
The upper envelope of $ and $ '  is called E. For any point w lying under E, 
there certainly exists at least one undestroyed torus ~-~ for the dynamical 
system equivalently defined by the Hamiltonians H and H e. Therefore Y is 
under the surface E' corresponding to the disappearance of the "last" 
KAM torus. 4 

4 Not i ce  tha t  the tori  we cons ider  here are those which  existed for s = 0 and  which still exist  

for a g iven value  of s. Fo r  s impl ic i ty  we call  them K A M  tori even if the K A M  theorem does 

no t  apply.  
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The calculation of E' would require consideration of the intricate orbit 
through T r of (Qo, ko, Xo, Yo) for any Q0. This is a difficult and possibly 
unuseful task since, owing to steps 2 and 3 in Section 2, the renormal- 
ization procedure is approximate, and also because we will show later that 
E already gives a good estimation of the true stochasticity threshold ~o. In 
Fig. 8, the section of ~, for k = 1, 2, 3, and 4, is plotted. Recalling that 
(k,X, Y) and (1/k, Y,X) define the same dynamical system, these curves 
also give the threshold for k = �89 1, and �88 The crosses indicate the traces 

of the intersection of g and $' ,  and the dotted line corresponds to 
Chirikov's criterion. (5~ The curves of Fig. 8 are constituted of different 

gn s with the plane k = const. pieces of the intersections of x, 
The curve p(v) (Fig. 9) yields the value of the velocity v of the "last" 

torus (Q  = k/v) for a given value of p for the values k = 1, 2, 3, and 4 
indicated under each curve. The numbers along the straight vertical lines 
indicate the value of n corresponding to the torus. When p increases, n first 
decreases, then increases. In the first case the rotation number 5 is Q = k + 

>- 

~.OO 

. B O  

.GO 

. 4 0  

. B O  

O.O 

"'''.o... 

. . . i  . . . .  1 . . . .  t . . . .  1 . . . .  J . . . .  I 

. ~ O  . ~ O  .GO . 8 0  I . O O  
• 

Fig. 8. Sec t ions  of  su r f ace  Z wi th  k = cons t  p lanes .  T h e  n u m b e r  o n  the cu rve  c o r r e s p o n d s  to 

the  va lue  o f  k. 

5 N o t i c e  t ha t  X = 1 for  every  va lue  of  n. 
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Fig. 9. Velocity v of the "last" torus as a function of p for the values k = 1, 2, 3, 4 indicated 
under each curve. The numbers along the straight vertical lines indicate the value of n 
corresponding to the torus. The v axis is shifted for k = 2 and 4. The scale for P is logarithmic. 

n + 8k~, in the second case Q = k + 1/(n + 6k~). The v axis is shifted for 
k = 2 and 4. The scale for O is logarithmic. 

The theoretical threshold can be compared with the one given by 
numerical integration of the canonical equations for the Hamiltonian (1). 
Owing to the growth of the correlation time when approaching the stochast- 
icity threshold, (l~ we can only compute the value s, of s for which a 
trajectory initiated in the stochastic layer of M makes one turn around the 
resonance (often called adiabatic) domain of P after a time ~-. Therefore s, 
gives an upper bound of the true stochasticity threshold s 0. Numerical 
results are displayed in Fig. 10 for ~- = 18,4007r/k. The solid lines are given 
by the above presented renormalization theory, the dotted line by the 
overlap criterion. The values of s, are indicated by triangles, the height of 
which gives the numerical indeterminacy. Figure 10a corresponds to k = 1 
and O = X / Y  varying, and Fig. 10b to O = 1 and k varying. The agreement 
between the numerical points and the theoretical curve is between 5 and 
10%. We shall show in the next section how a better curve (above the 
present one) can be found for Fig. 10b for k > 2. 

Owing to the average made in the second step of the renormalization 
procedure, after each iteration of T r, we get a dynamical system a little less 
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Fig. t0. Stochasticity thresholds for (a) k = 1, X / Y  = RO varying (b) X / Y  = 1, k varying. 
Continuous lines correspond to the renormalization theory, dotted line to the overlap criterion, 
and triangles to numerical calculations. 

stochastic than the original one. Therefore Y,' is an upper  bound  to the true 
stochasticity threshold E o. As Z is a lower bound  to Y,', there remains an 
indeterminacy for the distance of E and  the s / s  f rom S 0. Fortunately,  
Greene 's  results (1~ allow us to make this point  clearer. As told in the 
Int roduct ion he studied the system described by the Hamil tonian  (3). W h e n  
looking at the resonances with n = 0 and  n = 1, we can define a stochasti- 

city parameter  s = 4 4 ~ .  Greene 's  results correspond to a threshold s o = 
0.627. We have looked at the value of s~ for the Hamil tonians  

m 

Ktm = v2/2 - M ~ cos (x  - nt) (34) 
n = l  

for various values of (l,m). The case ( l ,m)= (oo, oo) corresponds to the 
Hamil tonian (3) and the case ( l ,m)= (0, 1) to the Hamil tonian  (1). W h e n  
increasing m from 1 and - l  f rom 0, s, slightly decreases (the system 
becomes more stochastic). F r o m  this variation, and Greene 's  value, we can 
infer the lower bound  s] = 0.67 for s o (this calculation also shows that the 
approximations of step 2 in Section 2 are valid, V, being a fast decreasing 
function of n). By direct numerical  integration we find that the upper  
bound  of s o for O = k = 1 is s2 = 0.74. The present theory yields s = 0.6995, 
so that the error made  on estimating s o f rom E is less than 5%. For  the case 
p = k -- 1, Y. corresponds to gl, i.e., to Q~ = (3 + ~ - ) / 2 .  It  can be shown 
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that only values of Q very close to QI 1 can increase the threshold with 
respect to Z and that this increase is less than 10 -3. For instance the torus 
with rotation number Q = 2 + ~k, where 6k is given by (33) with a i = 1 for 
i :/: 3 and a 3 = 2, disappears for s = 0.6999. So, Greene's intuition can be 
stated more precisely: the last KAM tori destroyed are in a small vicinity of 
the torus associated to the golden mean. 

5, POSSIBLE IMPROVEMENTS OF THE METHOD 

As mentioned before, a better torus than the ~-~'s can be found for 
k 0 < �89 or k 0 > 2. Let S x~ be the part of the upper envelope Z for the initial no 
values of O and k. This surface is related to the torus 5-X,0o with the rotation 
number Q~o. For simplicity we assume that O remains the same after one 
iteration of T r, so that the original point ( k o , X  o, Yo) and its first iterate 
through T r are both in the plane X = O Y. Figure 11 shows a section of the 
space (k, X, Y) by this plane; U o corresponds to the direction of the plane. 
As shown by Eq. (26) and Fig. 6, T r transforms k 0 into k'(k0), which 
belongs to the interval [1,2 2]. Let $~' be the part of the upper envelope Z for 
k '  = k ' ( k o )  and O. The numerical calculations of the preceding section have 
shown that )t o = )t 1 = 1, but that n 1 ~ n o. As shown in Fig. 11, Sx, is above 
S, x~ for k = k' and under g~  for k = k 0 (this results from the definition of 
the upper envelope). Let us define the torus ~-0 related to the rota- 
tion number Q0 = k0 + no + 6k0, where 8k 0 = [1 + Xl(Z' - 1)]/(z'  + 1) with 

k, 

k, 

2 
k'(ko) 

1/2 11, ul, 

Fig. 11. Graphical  proof of the existence of a stabler torus than ~-~o. 
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z' = n 1 + 8k~ ~. The image of ( Qo, ko, Xo, Yo) by T r is ( Q' ,k ' ,X ' ,  Y'), with 
Q' -- k' + z'. From the definition of z' it results that 8k' = 8kX,, ' is a fixed 
point of the mapping 8k ---> 8k'. Therefore ~-0 is stable if (k', X', Y') is under 
SXl. The limit of stability of ~-0 is the point Tr-l(ck,), where Ck, is the 
intersection of Sx. with k = k'. Let (k ' ,X ' ,  Y') be the coordinates of Gk,. nl 
From Eqs. (26) and (28)-(32) we can define T r- 1 with the here-defined n o 
and 8 k =  8k o. Let ( Q , k , X , Y ) =  Tr - I (Q ' , k ' ,X ' ,Y ' ) .  It results from the 
definitions of Q0, k0, and p, that Q = Q0, k = k 0, and p = X / Y .  As Ek' is 
above S x~, X0=h  I = 1 and the definition of Q0 yields that (ko,X, Y), 
denoted in Fig. 11 by T-1(Ck,), is above SXo T-J(Ck,) gives the limit of no" 
stability of ~-0. As a consequence g'0 disappears later than ~-x~ and gives a 
better estimate of s o . The corresponding curve is nearer to the numerical 
points of Fig. 10b. 

In the third step of the renormalization procedure, we assumed that 
I(t) remains close to I 0 on the torus ~-0. The (v, x) to (I, 0) transformation 
has only suppressed the perturbation of the trajectory by the resonance M. 
In fact the perturbation by the resonance P remains. For that reason, 
instead of F A (9), it could be better to use the Kolmogorov transformation 
from (v, x) to another (1, 0) defined by the generating function 

F( I , x , t )  = Ix + ( M s i n x ) / I  + [ e s i n k ( x  - t ) ] / [ k ( I  - 1)] (35) 

which "kills" both resonances M and P, It is easily shown that this 
transformation yields the new Hamiltonian 

H'(I,O,t)  112 + M 2 p2 
= + E V. l ( I )cos[(nk  + t)O - ,,kt] 

~-2 + 4 ( 1 -  1) 2 ,,l  

(36) 

where the coefficients V,t are exactly computable. Using this transforma- 
tion, the resonances R, also appear and a similar renormalization transfor- 
mation can be defined, 6 which can be interesting for the tori not too near to 
resonance M or P (1 not too close to 0 or 1). With this transformation I(t)  
is constant up to terms of second order in M or P. This could improve the 
third step of the procedure. 

6. APPLICATION TO TWO-DEGREES-OF-FREEDOM 
HAMILTONIAN SYSTEMS 

Let us consider Hamiltonians of the type 

H ( J , 0 )  = H0(J ) + r ~] Vi(J)cos(p i �9 0) (37) 

6 The series (36) is double but  we retain only the previously defined resonances R. (related 
here to VnO, because of the scaling of the VAt's: if the resonance related to Vm! is between R n 
and R.+  l, then Vmt<< V.+I, 1 < V., 1. 
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where J, O, Pi are two-dimensional vectors and ~ a set with more than one 
element. The pi's are noncolinear so that H is nonintegrable. Let us define 
tr = OHo/OJ. In the limit e = 0, the resonance condition for resonance i is 

pi .  o~(J) = 0 (38) 

This defines a value I i of J. This value lies on the energy line Ho(J ) = E. 
Therefore the Ii's are ordered on this line. Let us consider two successive 
resonances with i = m and i = p. Figure 12 shows the plane of the J 's ,  the 
energy line, the tangent vectors m =Pm and p = p? to this line at I m and I?, 
and the normal vectors o~i = o~(I~). We are interested in the stability of a 
given torus $-0; it corresponds to the frequency o~ o which is related in the 
limit c = 0 to a value I o defined by the condition 

o~ o = o~(I0) (39 )  

Let q be a vector perpendicular to o~ o, and therefore tangent to the energy 
line at I o. As done before we forget about  the resonant terms other than m 
and p (when dealing with $-o) by averaging on them. This yields 

H ' ( J ,  0)  = H0(J ) + c ~ V,(J)cos(p i- 0 )  (40) 
i = m , p  

We now perform on H '  a series of transformations with the underlying 
idea that the graph of H0(J ) is locally (generically) a parabola  with axis o~ 0 
and tangent to q. With new coordinates along these axes, H 0 is parabolic, 
and H '  becomes equivalent to a one-degree-of-freedom time-dependent 
Hamiltonian (cf. the correspondence between H and 56 of Section 1). 
Simple approximations will allow us to use the results on the Hamil tonian 
(1) for determining the stochasticity threshold of H ' ( J ,  O). 

We define the canonical transformation from (J, O) to (~, ,/, % tp) given 
by the generating function 

F(~,~I,O) = 0 .  (I o + ~q + ~O~o) (41) 

Fig. 12. Energy line Ho(J ) = E. 
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This yields 

j _  OF 
8 0 - I~ + 4q + 7/o~0 (42) 

3F cp = ~ = q .  0 (43) 

OF 
- on  - ~ o "  0 ( 4 4 )  

Let ( a  i, fli), i = m, p, be defined by 

Pi = a i q -  fliO~O (45) 

Then Pi" 0 = a i~  - fli~. Expanding H '  in (4, 7) and retaining the lowest- 
order terms we get 7 

H"(4,*/ ,%ff) =�89 + w2*/+ E ~] Ui(4,~l)cos(aiep - f l i~)  (46) 
i=  m,/o 

where U,(~,~/) = V/(J), a = qooq, o = ~o~/8J, and o 0 = O(Io). The constant 
term Ho(Io) has been omitted as it plays no role in the dynamics. In the 
limit where r = 0, 4 and r /are related through 0 = �89 a~ 2 + Wo2,/on the energy 

line Ho(I ) = H0(lo). This defines ~ = ~/(0- As 7/= O(~ 2) we dropped the 
terms in 4~/ and ~/2. By using this relation we approximate U~(4,~) by 
T/(0 --- Ui[~,~(0] and we get 

H ( 3 ) ( ~ , ~ / , ~ , ~ )  = �89 2 + WO2T/ + ~ E T i ( 4 ) C O S ( a i f l 9  - -  flit//) (47) 
i=m, p 

The dynamics of (~, ~0) defined by (47) are the same as the one defined by 

H{4)(4,%t) = �89 + ,  ~] T i ( 4 ) c o s ( a i ~  - ,{i t)  (48) 
i=m, p 

where ~i : (-02/~i" 

We now make transformations similar to those of Appendix A. The 
transformation from (4, ~) to (w ,  x )  defined by the generating function 

F ( ~ , x )  = 4 ( x  + ~[ml)/OLm "}- ~kX "4- I~t (49) 

where A = - . { . / (aa2m) and/~ = a a ~ 2 / 2  + 7mA, defines a new Hamiltonian 

H'5)(w, x,t) = -I " "2  w 2 2  ----m-- dr E( Tm[ OLm(W -- ~k) ]COSX 
+ - X)]cos( x - (50)  

where w = - a e ( v  m - ve), v i = y i / a i ,  and k = a J a m .  

7 As we noticed at the end of Section 2, T r may be defined for any real value of k. Therefore 
to o and q may have real components. 
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~0 now corresponds to w 0 = X. We define a new time t' = o~t/k, and a 
new velocity v = kaa~w/~o. The motion of (v, x) is defined by the Hamilto- 
nian 

H(6) (v , x , t  ') = v212 - M ( v ) c o s x  - P ( v ) c o s k ( x  - t') (51) 

where M ( v )  and P(v)  are -eaa2(k2/oa2)T,.[oov/(akam) - amX ] for i = m, p. 
This Hamiltonian, apart from the dependence of M and P on v, is the same 
as (1). g'0 is related to v 0 = apflm/(%fim - amfle). 

For each torus we can define a Hamiltonian (51) much simpler than 
(37), which contains the information about the stability of the torus. In fact 
if o~ 0 and o 0 do not change too much between Im and Ie, the Hamiltonian 
(51) defined for I 0 colinear to (I m - t - Ip) /2  can describe the stability of all 
the tori situated between the resonances m and p. Now the ratio p 
= ( M / P )  t/2 is a function of v. A torus ~-x is related to a velocity 
vX~ = k~  Q x, and consequently to a value O 2 = p(vX~). The intersection of the 

x for the destruction of the torus line |  p~) with $x yields the threshold e, 
g'n x. NOW the v dependence of p does not any longer allow for the build up 
of an upper envelope. Instead of that we must find the largest r = e 0, to 
get an estimation for the onset of the large-scale instability between the 
resonances m and p of Hamiltonian (37). 

A lower bound of e 0 can be obtained if the curve O(v) intersects for 
some value v~ x the curve p(v) of Fig. 9. Then the part of sx_ of interest for 
computing %x is a part of the upper envelope E. The value of E2 can be 
therefore deduced from the curves of Fig. 8, and yields a lower bound to %. 

In any case the x, $~ s defined for the Hamiltonian (1) are sufficient to 
estimate the threshold e 0 for a large class of two-degrees-of-freedom Hamil- 
tonian system. 

7. C O N C L U S I O N  

This renormalization theory, though nonrigorous, gives a basis to the 
intuitive feeling of infinitely nested dynamical subsystems. It associates the 
destruction of the tori to the KAM theory and yields a strong indication 
that the appearance of the large-scale stochastic instability corresponds to 
the disappearance of the last tori between two resonances. The low rigorous 
upper bounds given by the mathematicians for the destruction of the tori, 
are therefore to be attributed to the use of the Kolmogorov transformation 
which involves small denominators that are avoided by using the action 
angle transformation. 

From a practical point of view, this theory can give better estimates of 
the threshold s o (or r of the large-scale instability than the usual overlap 
criterion. It shows that for values of p and k not too far from 1, the overlap 
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criterion yields the right order of magnitude for s o. Moreover it indicates a 
possible candidate for being the "last torus" in between two resonances. It 
is important to know the position of this torus because, just above the 
threshold, the vicinity of this torus is characterized by the largest correla- 
tion time for the stochastic instability. 

A forthcoming publication will make the connection between torus 
destruction and the destabilization of neighboring periodic orbits. For (P, k) 
fixed, let s(Q0) be the threshold for the destruction of ~-0. We shall show 
that the graph of s(Q0) is a fractal from which the width of any stochastic 
layer can be deduced. The analogy of the present renormalization proce- 
dure  with Wilson's one (12) allows us to expect that there is a characteristic 
exponent for the correlation times (cf. Ref. 5, Fig. 5.3, p. 313) and the 
Kolmogorov entropy. 

Future efforts are necessary to improve the approximations of the 
present theory. For instance a better method than the averaging one has to 
be found. In some cases the Kolmogorov transformation seems to be a 
good candidate. 
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APPENDIX A. MOTION OF A PARTICLE IN TWO 
LONGITUDINAL WAVES 

This motion is described by the Hamiltonian 

2 
H(W,Z,Z) "~" �89 2 -  E Vig~ - 0~ir (A1) 

i= l  
where ki, r V i are the wave numbers, frequencies, and amplitudes of the 
waves i = 1 and 2. We define the canonical transformation from (w, z) to 
(u, x) by the generating function 

r ( w , x , t )  = w ( x  + O~lt) /k  I + Xx + t~t (a2)  

where h = - o ~ / k 2 1  and # -= kZX2/2 + X~0 1. It yields the new Hamiltonian 

H ' ( v ,  x ,  t) l b 2 -  2 = ~,~1 u -- V 1 cosx - V 2 c o s ( k x  - ~ t )  (A3) 

with k = k J  k I and ~ = k2Av,  Av  = v2 -- v], where v i ~ -  ~i /  ki is the phase 
velocity of the wave i. This transformation corresponds to the change from 
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the laboratory frame to the i = 1 wave frame. Let us define a new time 
t '=  ~ot/k, and a new velocity v = k l u / A v .  The motion of (v ,x)  is de- 
scribed by 

H " ( v , x , t ' )  = lv2 - M c o s x  - P c o s k ( x  - t') (A4) 

where M = V1/Av z and P = V2/Av 2. This Hamiltonian is nothing but (1). 
Therefore the motion of one particle in two one-dimensional longitudinal 
waves depends only on three parameters M, P, and k. 

APPENDIX B. CONNECTION BETWEEN THE ACTION ANGLE 
AND KOLMOGOROV TRANSFORMATIONS 

We consider the action angle transformation (9) in the limit where 
*/= M / v  2 goes to zero. In this limit, the parameter m defined by (8) is 
nothing but m = 4,l + 0(,/2). Using the asymptotic expansion ~ 13) of E, we 
get from (7) 

I = 2 ( M / m ) l / 2 [ 1  - m / 4  + O(m2)] (B1) 

The definition of m yields 

( M / m )  1/2= �89 + 2,/sin2(x/2) + OQ/2)] (B2) 

As a result 

I = v [ 1 -  */cosx + O ( * / 2 ) ] = v - ( M / v ) c o s x  +vO(, /2)  (B3) 

Or equivalently 

v = I + ( M c o s x ) / I  + IO(,] 2) (B4) 

By using the asymptotic expansion ~ 13) for am, we get from (10) 

x ( I ,O)  = 0 + ( M s i n O ) / v  2 + 0(*/2) (B5) 

or equivalently 

0 = x - ( M s i n x ) / I  2 + 0(*/2) (B6) 

Formulas (B4) and (B6) are to order ,12 the equations corresponding to the 
Kolmogorov transformation 

F r ( x , I  ) = x I  + ( M s i n x ) / I  (B7) 

This relation between F A and F K explains why the Kolmogorov 
transformation has proven to be a good transformation r for taking into 
account the perturbation of resonance M by resonance P (and conversely). 
This transformation gives the same invariants as the first order of Taylor 
and Laing's method. ~ 15~ 
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APPENDIX C. 

o r  

DERIVATION OF Vp FOR v POSITIVE 

Let -r = 2pTr be the period of H '  (14) in 0. V, is given by 

Vp = 1 s 1 6 2  { i~2kam(KO/~r)- (k + v)Ol)dO (ci) 

and 

where 

with 

(1 + X) ~' is given by 

Let/x = 2k, then 

I f ( o ) ]  ~'= A ~exp(ikO)(l + X) ~' 

(1 + x)~= 1 + E C x '  (c9) 
l =  1 

c~'= ~(~-  1)-.. ( ~ -  z+ 1)/z! (clo) 

W h e n / ,  is an integer C~ t is a binomial coefficient (C~ = 0 for I > / , ) .  X l can 
be written 

XZ= ~ eexp(ioO) (CI1) 
(nl. n2 . . . . .  nz) 

l 

P = I-[ a.j (C12) 
j = l  

l 

o = E .j ( c l 3 )  
j = l  

(c8) 

7" 

E =  u s [ f (e)]2kexp[- i (k  + v)O]dO (C2) 

where f(O) = exp[iam(KO/rc)]. This function can be expanded in the home 
q(m) = e x p [ -  rtK(1 - m)/K(m)] 

f(O) = A exp(iO/2)(1 + X) (C3) 

with 

A = 2~r(q/m)'/2/[(1 - q:)K(m)] (C4) 

X = ~ a, exp(inO) (C5) 

nq=0 

a,  = (1 - q2)q"/(1 - q, .+2) n > 0 (C6) 

a _ ,  = - ( 1  - q2)q3"-2/(1 - q4,-2) n > 0 (C7) 
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The terms in X t which  contribute  to the integral (C2) are those for which  
o = v. Let us break a into the parts a+  and a _  obtained,  respectively,  with 
posit ive and negative ni's. According  to (C6) and (C7), a ,  = O(q n) for 

3In]-~2 n > 0 and a n = O(q ) for n < 0. Therefore  the product  P is of  order 

= ~nj>onj + ~<0(3]njl- 2). 
If l < v, then all the nj's can be posit ive and t~ = o. The  contr ibut ion to 

V~ is of  order q~. If l > v, the order is q~+2 and we neglect  the contr ibut ion 
to V,. For  l <  v, the contr ibut ion of X t to V~ is q ~ •  n u m b e r  of  (nl,  
n 2 . . . . .  nt)'s with o --- v and nj/> 1. It is easy to show that this number  is 
noth ing  but  C~-~. As a result 

[ 2~ q 1/212kqU 
V~ = Y.~ K - - - ~ (  m ) (C14) 

with 

O(q (C15) 
/=1 

W h e n  2 k  is an integer, the V,'s can  be rigorously c o m p u t e d  by  the 
residue m e t h o d  described in Ref.  14 and by using the expans ion  near a pole  
of  the elliptic funct ions  given in Ref.  16. This yields 

[ 2qr q 1/2] 2k ) 
v, (C16) 

with  Z~/2 = 1, El, = 1 + v, ~3/2  = ( 3 / 2  + v ) 2 / 2  -- (2 -- m)(K/27r)  2, Z2~ 
= (2 + v)3 /6  - (2 - m)(2 + v)(K/~r)2/3. This expression reduces  to (C14) 
w h e n  q goes  to 0. 
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